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GROUP - A

1. Answer all questions and fill in the blanks asrequired. [1x 12
(a) Whatis removal type of discontinuity ?

4L R
(b) f0o e BIg e, ¢

(c) Whatlsth > directi ativeofa scalar field ¢ ata point



(2]
(h) What is grad of a constant function ?

(i) Ifais vector, find V(r.a).
do

1)) e has maximum magnitude along .

(k) State Gauss's Divergence theorem.
(I) State Green's theorem in plane form.

: GROUP - B
2. Answer g_ny_g_gm of the followlng quastlons [2x8

R o [ X2 =y
Find l Xy
o (X, )LT(o 0) x2+y2

B (B () ) e (Y (0, 0)




[3]
[
: X=y
(f) Find e dx dy.
0 o (x+y)?

(g) Evaluate ,[ F . dr where
c

F = 3xyi — 5zj + 10xk along the curve C given by
x=tt+1,y=2t2,z=t fromt=1tot=2.

T a(1-cosB)
(h) Evaluate f j r sin © dr d@ in the upper half of the

D30
cardioide r = a(1 — cos 0).

(i) Whatis the greatest rate of increase of u=xyz” at (1, 0,3) ?

1) I r.nds = 3y, vis the volume enclosed by 'S'.
s 3

 GROUP - C
: Answer any eight questloqs W e ) [3x8

(@ foxy)=(x+y)




(c)

(d)

(e)

()

(9)

(h)

[4]

If u=x%, where X2+ xy +y* = 1.

Fangu
Find 't

Show that X2 — 2xy + y2 + x3 — y® + x° has neither maximum

nor minimum at origin.

Evaluate I J. (x2 + y?)dx dy where R is the region bounded
o ‘ | j

byx=0,‘y=0,x-l~y-‘= 15

Show that the necessary\ar‘l‘dsufﬁcient condition for a vector

function v(t) to h.avg constant magmtude IS V. %—t‘f =0.

If F=(x+3y)i+(y-22)+ (x+azk,

Prove that div(a x r) = 0.
Calculate normal der

LR L e




[5]
GROUP - D
Answer any four questions.
Prove that f(x,y) =|xy |%. Show that f, and fy exist at (0, 0) but it
is not differentiable at (0, 0). [7

Find the equation of the tangent plane and normal line to the sur-
face yz—zx + xy =-5at (1, -1, 2). | [7

Find the maxima and minima of the function

X3 +y3 —63(x +y) + 12xy. [7

Prove that curl curl F = grad div F — Laplacian F. [7

2 2
X &
Evaluate I I (—2- + %) dx dy over the positive quadrant of the

a
ellipse &

X2ty

az.--i';z-q i | Ty

1 F 4xz: - yzj + yzk Evaluate I F n ds where S is the surface
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{ GROUP-A
'8 '
1. Answer all questions and fill in the blanks as required.  [1 x 12

(a) Every vector space contains a zero vector. (True / False)

(b) Aplane in IR® not through origin is a subgroup of R®. Prove




[2]

' APy YA
The characteristic polynomial of the matrix A = (0 57 ) is

(9)
- of degree .

(h) If alinear operator T on an n-dim. vector space V, has n dis-
~ tinct eigen values, then T is

(i) | There exists a linear operator T with no T-invariant subspace.

_ (True/ False)

. RS 1 + i 3 —| *,

()il A--(_‘| W) ) then A

(k) Write Cuachy-Schwarz Inequality.
() Define Real Spectral Theorem.

GROUP B
| 2 Answermy_@_lgb.tofthefollowmg questlons | [2 x 8

3 Then prove that the



(f)

(9)

(h)

(i)

@)

[3]

A BeM_, (F)
Show that tr(AB) = tr(BA) and tr(A) = tr(AT).

Prove that a linear operator T on a finite-dimensional vector
space is invertible iff zero is not an eigen value of T.

Prove that det(T — Al ) = det(['l']B — AI) for any scalar A and
any ordered basis 3 for V.

Let V be an inner product space. Then for x,y € Vandc €
F. Then prove that < x, cy > =¢ L X, y >.

Write Gram-Schmidt orthogonalization process.

Prove that the matrix A= ((: (;) is unitary.

= R o
2, £ g T

GROUP - C



(e)

(f)
(9)
(h)

[4]

1 3 e 1 V. 3
Let A= vV 0] ! 3

Find [LA]B if B={V, Vo

Determine all the eigen values of

2 0=l
P B R
2 0.~
Every normal operator is not diagnalizable. Prove it.

Eind the orthogonal matrix whose first row is (3 ,{% 8).

Erove el W @ W+ and T is the projection on W along

T-cyclic subspaceof V generated by V is T-invariant. Prove

s from the field R
subspace of V.7




[5]

Let T:R?— R®be defined by T(a, ,a,) =(a, ~a,,a,, 2a, +a,).

~ Let p be the standard basis for IR? and y = {(1, 1, 0), (0, 1, 1),

(2,2, 3)). Compute [T]. If o ={(1, 2), (2, 3)}, compute (11

[7

_-'L,l_Let V be a finite-dimensional vector space over the field F and let
W be a subspace of V. [7

Then prove that dim(W) + dim(W°) = dim V.

' -f,_Let T be a linear operator on a finite-dimensional vector space V
tandlet A, A, Ay i A, bedistinct eigen values of T. If v,

be‘ ab eigen vector of T corresponding to the e-igen value ki ,i=1,
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GROUP - A

1. Answer all questions and fillin the blanks as required.  [1 x 1
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GROUP - A

1. Answer all questions and fill in the blanks as required.  [1 x



[2]

(h) Whatis an unbalanced transportation problem ?

(i) Define a Zero-sum Game.
(j) Whatis meant by strategy 7

(k) Define a Saddle point.

() What is Dominance property ?




(3]

(f) Mention two differences between transportation and an assi-
gnment problem.

(@) What is degeneracy in transportation problems ?
(h) Define Assignment problem.
(i) Write two properties of competitive games.

() What are Rectangular games ?

GROUP - C

3. Answer any eight questions. [3x 8
(a) Solve graphically the following LP problem :

Mevimise Z = 3x, + o,

3 P & WO




[#]

Eind the inverse of the following matrix using Simplex me.
Gt thod :

I AR
A=3 2 |

(d) Write the dual of the problem :
Minimise Z = 3)‘<1 A
subject to 2& +3x,22

.
i N 3 ) il O LY
3 \ : \ i
v X O A
¢ A Y & ¥Rl ] 3 & A \

gnm

gnment problem




(5]

(i) Solve the following transportation problem by North-West

Corner rule :
To
W, W, W, Supply
(&) 5 () (4) 5
8
S (3 3 ()

(1) (6) (2) 14
Demand 7 9 18 34

F
F2
Bt Bl o ) () 7
F4

(i) Solve the following game :







o splvo th
trix:

[ |

e assignment problem represented by the following ma-

1 11 11 [V Vi .Vl
Ml 2e | OB 11 b g
ReirR 2 | 50, | 63 | 48
s | 91 gl 45| 39
R o7 [ 49 | 38 | 32
el i Sl oo 26 | 18
Blies 153 31 17128
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[2]

The mean of binomial distribution is

The mean and variance of Poisson distribution are

If P(1) = P(2), then the mean of Poisson distribution is

- Highest range of coefficient of correlation is

The area under the whole normal curve is

nean, median and mode are equal,




[3]
(g) Define moment generating function of a binomial distribution.

(h) If X denotes the number of heads in a single toss of 4 fair
coins, find P(X < 2).

(i) Show that variance of random variable X Is
o? = E(X?) - (E(X))%
() Testwhether the equations 2x + 3y =4 and x +y = 5 repre-

sent valid regression lines.

GROUP - C

3. Answer any eight questions. [3 %8

(a) ForanytwoeventsAandBc SandAc B, prove that |
P(A) < P(B) and P(B ~A) = P(B) - P(A).
~ (b) If AandBare independentevents, then prove that A%, B® are

\.
‘1"; -]




r————l

(e)

()

(9)

[4]

Let X be the outcome when a fair die is thrown. Find mo-

ment generating function.

Two random variables X and Y are defined as Y=4X+0

Find correlation coefficient between XandY.

Find binomial distribution whose mean is 5 and

10

variance is ?3-

If a Poisson dlstrlbutlon IS such that P(X =} . % P(X = 3),
find P(X > 1)

e ity function



[5]
5. A continuous random variable has the probability density function
[7

kxe for x=20,A>0
f(x) =
0 , otherwise.

Find k, mean, variance.

6. Find the probability of getting an even number 3 or 4 or 5 times in
throwing 10 dice using binomial distribution. [7

7. Explain moment generating function of Poisson distribution.  [7

State and prove Central Limit theorem. e 17




